Microkit User Manual
(v2.0.1)

https://sel4.foundation

Copyright © 2025 sel4 Project a Series of LF Projects, LLC.
Distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License.
sel4 is a trademark of LF Projects, LLC.

https://creativecommons.org/licenses/by-sa/4.0/legalcode

Contents

1

Introduction 1
1T PUMPOSE e e e e 1
1.2 OVervieW e e e 1
1.3 DocumentStructure 2
Concepts 3
270 System ..o e 3
2.2 ProtectionDomains 3
221 Entrypoints 3
2.2.2 Scheduling e 4
2.3 VirtualMachines 4
2.4 MemoryRegions e e e 5
2.5 Channels 5
2.51 Protectedprocedures 6
2.5.2 Notifications 6
2.6 Interrupts e e 7
27 Faults 7
SDK 8
3.1 Configurations e 8
3.2 Debug e 8
3.3 Release 8
3.4 Benchmark 8
3.5 SystemRequirements 8
Microkit Tool 10
Language Support 1
libmicrokit 12
6.1 void init(void) e e 12
6.2 void notified(microkit_channel ch) 12
6.3 microkit_msginfo protected(microkit_channel ch, microkit_msginfo
msginfo) 13
6.4 sel4_Bool fault(microkit_child child, microkit_msginfo msginfo,
microkit_msginfo *reply _msginfo) 13
6.5 microkit_msginfo microkit_ppcall(microkit_channel ch, microkit_msginfo
msginfo) 13
6.6 void microkit_notify(microkit_channel ch) 13
6.7 void microkit_irq_ack(microkit_channel ch) 14
6.8 void microkit_deferred_notify(microkit_channel ch) 14
6.9 void microkit_deferred_irq_ack(microkit_channel ch) 14
6.10 void microkit_pd_restart(microkit_child pd, uintptr_t entry_point) . 14
6.11 void microkit_pd_stop(microkit_child pd) 14
6.12 microkit_msginfo microkit_msginfo_new(uint64_t label, uinti6_t
COUNL) & v v e e e e e e e e e e e e e 14
6.13 uint64_t microkit_msginfo_get_label(microkit_msginfo msginfo) 14
6.14 uint64_t microkit_msginfo_get_count (microkit_msginfo msginfo) 14
6.15 uint64_t microkit_mr_get(uint8_t mr) 14
6.16 void microkit_mr_set(uint8_t mr, uint64_t value) 14

10

6.17
6.18
6.19

void microkit_vcpu_restart(microkit_child vcpu, sel4_Word entry_point) 15

void microkit_vcpu_stop(microkit_child vepu) 15
void microkit_vcpu_arm_inject_irq(microkit_child vcpu, sel4_Uintl6
irq, sel4_Uint8 priority, selL4_Uint8 group, selL4_Uint8 index) 15

6.20 void microkit_vcpu_arm_ack_vppi(microkit_child vcpu, sel4_Word irq) 15

6.21 seL4_Word microkit_vcpu_arm_read_reg(microkit_child vcpu, selL4_Word
TEE) v v v e e e e e e 15
6.22 void microkit_vcpu_arm_write_reg(microkit_child vcpu, selL4_Word
reg, sel4_Word value) i e 15
6.23 void microkit_arm_smc_call(selL4_ARM_SMCContext *args, seL4_ARM_SMCContext
KTESPONSE) & o v v o v v v e e e e e e e e e e e e e 15
System Description File 16
7.1 protection_domain e e e e e 16
7.2 MemOTY_TEeEIiOM . . o . v v v v it i e e e e e e e e e e e 17
7.2.1 Pagesizesbyarchitecture 17
7.3 chanmel e 18
Board Support Packages 19
8.1 Ariane (CVAB) e 19
8.2 Cheshire e 19
8.21 UsingU-Boot 19
8.2.2 Raw systermwithnobootloader. 19
8.3 ILMXB8MM-EVK e 20
8.4 I.MX8MP-EVK e 20
8.5 ILMX8MQ-EVK e 20
8.6 MaaXBoard e e 20
8.7 0droid-C2 e 20
8.8 0Odroid-C4 e e 21
8.9 QEMUYvirt (AArch64) 21
8.10 QEMU virt (RISC-V 64-bit) 21
8.11 Raspberry Pid4B e 21
8.12 Pine64 ROCKProb4 e e e 22
8.13 Pineb4 Star64 e e e 22
8.14 TQMa8XQP 1GB e e 22
8.15 ZCUT02 e e 23
8.16 Adding Platform Support 24
8.16.1 Prerequisites 24
8.16.2 Getting Microkit Components Working 24
8.16.3 Contributing Platform Support 24
Rationale 25
0T QVEIVIEW e e 25
9.2 ProtectionDomains 25
9.3 Protected Procedure Priorities 25
9.4 Protected Procedure ArgumentSize 25
9.5 Limits e e 26
Internals 27
10.1 Loader 27
10.2 Monitor e e e e 28
10.3 libmicrokit 28

10.4 Microkit tool

1 Introduction

The sel4 Microkit is a small and simple operating system (OS) built on the seL4 microkernel.
Microkit is designed for building system with a static architecture. A static architecture is one
where system resources are assigned up-front at system initialisation time.

1.1 Purpose
The Microkit is intended to:

« provide a small and simple OS for a wide range of loT, cyberphysical and other embedded
use cases;

+ provide a reasonable degree of application portability appropriate for the targeted use
cases;

* make selL4-based systems easy to develop and deploy within the target areas;

* leverage sel4’s strong isolation properties to support a near-minimal trusted computing
base (TCB);

* retain selL4’s trademark performance for systems built with it;

* be, in principle, amenable to formal analysis of system safety and security properties
(although such analysis is beyond the initial scope).

1.2 Overview

A Microkit system is built from a set of individual programs that are isolated from each other,
and the system, in protection domains. Protection domains can interact by calling protected
procedures or sending notifications.

Microkit is distributed as a software development kit (SDK). The SDK includes the tools, libraries
and binaries required to build a Microkit system. The Microkit source is also available which
allows you to customize or extend Microkit and produce your own SDK.

To build a Microkit system you will write some programs that use libmicrokit. Microkit pro-
grams are a little different to a typical process on a Linux-like operating system. Rather than a
single main entry point, a program has four distinct entry points: init, notified and, potentially,
protected, fault.

The individual programs are combined to produce a single bootable system image. The format
of the image is suitable for loading by the target board’s bootloader. The Microkit tool, which is
provided as part of the SDK, is used to generate the system image.

The Microkit tool takes a system description as input. The system description is an XML file that
specifies all the objects that make up the system.

Note: Microkit does not impose any specific build system; you are free to choose the build
system that works best for you.

1.3 Document Structure

The Concepts chapter describes the various concepts that make up Microkit. It is recommended
that you familiarise yourself with these concepts before trying to build a system.

The SDK chapter describes the software development kit, including its components and system
requirements for use.

The Microkit tool chapter describes the host system tool used for generating a system image
from the system description and user-programs.

The libmicrokit chapter describes the interfaces to the Microkit library.
The System Description File chapter describes the format of the system description XML file.

The Board Support Packages chapter describes each of the board support packages included in
the SDK.

The Rationale chapter documents the rationale for some of the key design choices of in Microkit.

The Internals chapter documents some of the internal details for how Microkit works.

2 Concepts

This chapter describes the key concepts provided by Microkit.

As with any set of concepts there are words that take on special meanings. This document
attempts to clearly describe all of these terms, however as the concepts are inter-related it is
sometimes necessary to use a term prior to its formal introduction.

+ system

+ protection domain (PD)
« virtual machine (VM)

* memory region

+ channel

+ protected procedure

+ notification

* interrupt

« fault

2.1 System

At the most basic level Microkit provides the platform for running a system on a specific board.
As a user of Microkit you use the platform to create a software system that implements your use
case. The system is described in a declarative configuration file, and the Microkit tool takes this
system description as an input and produces an appropriate system image that can be loaded
on the target board.

The key elements that make up a system are protection domains, memory regions and channels.

2.2 Protection Domains

A protection domain (PD) is the fundamental runtime abstraction in Microkit. It is analogous,
but very different in detail, to a process on a UNIX system.

A PD provides a thread of control that executes within a fixed virtual address space. The isolation
provided by the virtual address space is enforced by the underlying hardware MMU.

The virtual address space for a PD has mappings for the PD’s program image along with any
memory regions that the PD can access. The program image is an ELF file containing the code
and data which implements the isolated component.

Microkit supports a maximum of 63 protection domains.

2.2.1 Entry points

Although a protection domain is somewhat analogous to a process, it has a considerably different
program structure and life-cycle. A process on a typical operating system will have amain function
which is invoked by the system when the process is created. When the main function returns the
process is destroyed.

By comparison a protection domain has up to four entry points:

+ init, notified which are required.
*+ protected which is optional.
+ fault which is required if the PD has children.

When a Microkit system is booted, all PDs in the system execute the init entry point.

A PD will not execute any other entry point until init has finished.

If a PD is currently executing an entry point, it will not execute any other entry point until the
current entry point has finished.

The notified entry point will be invoked whenever the protection domain receives a notification
on a channel. The protected entry point is invoked when a PD’s protected procedure is called by
another PD. A PD does not have to provide a protected procedure, therefore the protected entry
point is optional.

The fault entry point is invoked when a PD that is a child of another PD causes a fault. A PD
does not have to have child PDs, therefore the fault entry point is only required for a parent PD.

These entry points are described in more detail in subsequent sections.

Note: The processing of init entry points is not synchronised across protection domains.
Specifically, it is possible for a high priority PD’s notified or protected entry point to be called
prior to the completion of a low priority PD’s init entry point.

The overall computational model for a Microkit system is a set of isolated components reacting
to incoming events.

2.2.2 Scheduling
The PD has a number of scheduling attributes that are configured in the system description:

« priority (0 — 254)

+ period (microseconds)
* budget (microseconds)
- passive (boolean)

The budget and period bound the fraction of CPU time that a PD can consume. Specifically, the
budget specifies the amount of time for which the PD is allowed to execute. Once the PD has
consumed its budget, it is no longer runnable until the budget is replenished; replenishment
happens once every period and resets the budget to its initial value. This means that the maximum

fraction of CPU time the PD can consume is ‘;‘;‘jﬁj

The budget cannot be larger than the period. A budget that equals the period (aka. a “full” budget)
behaves like a traditional time slice: After executing for a full period, the PD is preempted and
put at the end of the scheduling queue of its priority. In other words, PDs with equal priorities
and full budgets are scheduled round-robin with a time slice defined by the period.

The priority determines which of the runnable PDs to schedule. A PD is runnable if one of its
entry points has been invoked and it has budget remaining in the current period. Runnable PDs
of the same priority are scheduled in a round-robin manner.

Passive determines whether the PD is passive. A passive PD will have its scheduling context
revoked after initialisation and then bound instead to the PD’s notification object. This means
the PD will be scheduled on receiving a notification, whereby it will run on the notification’s
scheduling context. When the PD receives a protected procedure by another PD or a fault caused
by a child PD, the passive PD will run on the scheduling context of the callee.

2.3 Virtual Machines

A virtual machine (VM) is a runtime abstraction for running guest operating systems in Microkit.
It is similar to a protection domain in that it provides a thread of control that executes within an
isolated virtual address space.

The main difference between a VM and a PD is that VMs have a higher privilege level such that
they may function as a guest operations and have their own user-space programs at a separate
exception level.

The virtual machine is always a child of a PD. Exceptions caused by the virtual machine are
delivered to the parent PD through the fault entry point.

Each virtual machine has a number of 'virtual CPU’s associated with it. Each virtual CPU (vCPU)
that belongs to a virtual machine has its own thread of execution. A vCPU also has an identifier
which is used to know which vCPU caused the invocation of the fault entry point.

The parent PD is responsible for starting and managing the virtual machine. Microkit provides
the abstractions in order to manage the virtual machine through selL4 but there is typically a
non-trivial amount of supporting code/infrastructure to properly start and manage a VM.

To keep the (potentially untrusted) virtual machine isolated from the rest of the system, Microkit
enforces that a protection domain can only ever manage a single virtual machine.

2.4 Memory Regions

A memory region is a contiguous range of physical memory. A memory region may have a fixed
physical address. For memory regions without a fixed physical address, the physical address is
allocated as part of the build process. Typically, memory regions with a fixed physical address
represent memory-mapped device registers.

Memory regions that are within main memory are zero-initialised.

The size of a memory region must be a multiple of a supported page size. The supported page
sizes are architecture dependent. For example, on AArch64 architectures, Microkit support 4KiB
and 2MiB pages. The page size for a memory region may be specified explicitly in the system
description. If page size is not specified, the smallest supported page size is used.

Note: The page size also restricts the alignment of the memory region’s physical address. A
fixed physical address must be a multiple of the specified page size.

A memory region can be mapped into one or more protection domains. The mapping has a
number of attributes, which include:

+ the virtual address at which the region is mapped in the PD
+ caching attributes (mostly relevant for device memory)
* permissions (read, write and execute)

Note: When a memory region is mapped into multiple protection domains, the attributes used
for different mappings may vary.

2.5 Channels

A channel enables two protection domains to interact using protected procedures or notifications.
Each connects exactly two PDs; there are no multi-party channels.

When a channel is created between two PDs, a channel identifier is configured for each PD. The
channel identifier is used by the PD to reference the channel. Each PD can refer to the channel
with a different identifier. For example if PDs A and B are connected by a channel, A may refer to
the channel using an identifier of 37 while B may use 42 to refer to the same channel.

Note: There is no way for a PD to directly refer to another PD in the system. PDs can only refer
to other PDs indirectly if there is a channel between them. In this case, the channel identifier is

effectively a proxy identifier for the other PD. So, to extend the prior example, A can indirectly
refer to B via the channel identifier 37. Similarly, B can refer to A via the channel identifier 42.

The system supports a maximum of 63 channels and interrupts per protection domain.

2.5.1 Protected procedures

A protection domain may provide a protected procedure (PP) which can be invoked from another
protection domain. Up to 64 words of data may be passed as arguments when calling a protected
procedure. The protected procedure return value may also be up to 64 words.

When a protection domain calls a protected procedure, the procedure executes within the context
of the providing protection domain.

A protected call is only possible if the callee has strictly higher priority than the caller. Transitive
calls are possible, and as such a PD may call a protected procedure in another PD from a
protected entry point. However the overall call graph between PDs must form a directed, acyclic
graph. It follows that a PD can not call itself, even indirectly. For example, A calls B calls C
is valid (subject to the priority constraint), while A calls B calls Ais not valid.

When a protection domain is called, the protected entry point is invoked. The control returns to
the caller when the protected entry point returns.

The caller is blocked until the callee returns. Protected procedures must execute in bounded
time. It is intended that a future version of Microkit will enforce this condition through static
analysis. In the present version the caller must trust the callee to conform.

In general, PPs are provided by services for use by clients that trust the protection domain to
provide that service.

Tocall aPP, aPD callsmicrokit_ppcall passing the channel identifier and a message structure.
A message structure is returned from this function.

When a PD’s protected procedure is invoked, the protected entry point is invoked with the
channel identifier and message structure passed as arguments. The protected entry point must
return a message structure.

2.5.2 Notifications

A notification is a (binary) semaphore-like synchronisation mechanism. For example, a PD can
notify another PD to indicate availability of data in a shared memory region if they share a channel.

To notify another PD, a PD calls microkit_notify, passing the channel identifier. When a PD
receives a notification, the notified entry point is invoked with the appropriate channel identifier
passed as an argument.

Unlike protected procedures, notifications can be sent in either direction on a channel regardless
of priority.

Note: Notifications provide a mechanism for synchronisation between PDs, however this is not
a blocking operation. If a PD notifies another PD, that PD will become scheduled to run (if it is
not already), but the current PD does not block. Of course, if the notified PD has a higher priority
than the current PD, then the current PD will be preempted (but not blocked) by the other PD.

Depending on the scheduling, one PD could notify another multiple times without it being sched-
uled, resulting in a single execution of the notified entry point. For example, if PD A notifies PD
B three times on the same channel without PD B ever executing, once PD B is scheduled it would
only see one notification and hence only enter notified once for that channel.

2.6 Interrupts

Hardware interrupts can be used to notify a protection domain. The system description specifies
if a protection domain receives notifications for any hardware interrupt sources. Each hardware
interrupt is assigned a channel identifier. In this way the protection domain can distinguish the
hardware interrupt from other notifications. A specific hardware interrupt can only be associated
with at most one protection domain. It should be noted that once a hardware interrupt has been
received, it will not be received again until microkit_irq_ack is called. The seL4 kernel will
mask the hardware interrupt until it has been acknowledged.

Microkit does not provides timers, nor any sleep API. After initialisation, activity in the system is
initiated by an interrupt causing anotified entry point to be invoked. That notified function may
in turn notify or call other protection domains that cause other system activity, but eventually all
activity indirectly initiated from that interrupt will complete, at which point the system is inactive
again until another interrupt occurs.

2.7 Faults

Faults such as an invalid memory access or illegal instruction are delivered to the seL4 kernel
which then forwards them to a designated ‘fault handler’. By default, all faults caused by protec-
tion domains go to the system fault handler which simply prints out details about the faultin a
debug configuration.

When a protection domain is a child of another protection domain, the designated fault handler
for the child is the parent protection domain. The same applies for a virtual machine.

This means that whenever a fault is caused by a child, it will be delivered to the parent PD instead
of the system fault handler via the fault entry point. It is then up to the parent to decide how
the fault is handled.

The default system fault handler (aka the monitor) has the highest priority and so will execute
and handle faults immediately after they occur. For child PDs that have their faults delivered to
another PD, the fault being handled depends on when the parent PD is scheduled.

3 SDK

Microkit is distributed as a software development kit (SDK).

The SDK includes support for one or more boards. Three configurations are supported for each
board: debug, release, and benchmark. See the Configurations section for more details.

The SDK contains:

+ Microkit user manual (this document)
* Microkit tool

Additionally, for each supported board configuration the following are provided:

* libmicrokit
* loader.elf
* kernel.elf
* monitor.elf

There are also examples provided in the example directory.

The Microkit SDK does not provide, nor require, any specific build system. The user is free to
build their system using whatever build system is deemed most appropriate for their specific
use case.

The Microkit tool should be invoked by the system build process to transform a system description
(and any referenced program images) into an image file which can be loaded by the target board’s
bootloader.

The ELF files provided as program images should be standard ELF files and have been linked
against the provided libmicrokit.

3.1 Configurations

3.2 Debug

The debug configuration includes a debug build of the seL4 kernel to allow console debug output
using the kernel's UART driver.

3.3 Release

The release configuration is a release build of the selL4 kernel and is intended for production
builds. The loader, monitor, and kernel do not perform any serial output.

3.4 Benchmark

The benchmark configuration uses a build of the seL4 kernel that exports the hardware’s perfor-
mance monitoring unit (PMU) to PDs. The kernel also tracks information about CPU utilisation.
This benchmark configuration exists due a limitation of the seL4 kernel and is intended to be
removed once RFC-16 is implemented.

3.5 System Requirements
The Microkit tool requires Linux (x86-64 or AArch64), macOS (x86-64 or AArch64).

On Linux, the Microkit tool is statically linked and should run on any distribution.

On mac0S, the Microkit tool should run on macOS 10.12 (Sierra) or higher.

https://github.com/seL4/rfcs/pull/22

The Microkit tool does not depend on any additional system binaries.

4 Microkit Tool

The Microkit tool is available in bin/microkit.

The Microkit tool takes as input a system description. The format of the system description is
described in a subsequent chapter.

Usage:

microkit [-h] [-o OUTPUT] [-r REPORT] --board [BOARD] --config CONFIG
[--search-path [SEARCH_PATH ...]] system

The path to the system description file, board to build the system for, and configuration to build
for must be provided.

The search paths provided tell the tool where to find any program images specified in the system
description file.

In the case of errors, a diagnostic message shall be output to stderr and a non-zero code
returned.

In the case of success, a loadable image file and a report shall be produced. The output paths
for these can be specified by -o and -r respectively. The default output paths are loader.img
and report.txt.

The loadable image will be a binary that can be loaded by the board’s bootloader.

The report is a plain text file describing important information about the system. The report can
be useful when debugging potential system problems. This report does not have a fixed format
and may change between versions. It is not intended to be machine readable.

10

5 Language Support

There are native APIs for C/C++ and Rust.
libmicrokit exports a C APl and so can be used in any language that supports C FFI.

For Rust, native bindings exist but are not included in the SDK itself. They are available at
rust-sel4.

1

https://github.com/seL4/rust-sel4

6 libmicrokit

All program images should link against 1ibmicrokit.a.

The library provides the C runtime for the protection domain, along with interfaces for the Microkit
APls.

The component must provide the following functions:

void init(void);
void notified(microkit_channel ch);

If the protection domain provides a protected procedure it must also implement:
microkit_msginfo protected(microkit_channel ch, microkit_msginfo msginfo);
If the protection domain has children it must also implement:

seL4_Bool fault(microkit_child child, microkit_msginfo msginfo,
microkit_msginfo *reply_msginfo);

libmicrokit provides the following functions:

microkit_msginfo microkit_ppcall(microkit_channel ch, microkit_msginfo msginfo);

void microkit_notify(microkit_channel ch);

microkit_msginfo microkit_msginfo_new(selL4_Word label, selL4_Uintl6 count);

seL4_Word microkit_msginfo_get_label (microkit_msginfo msginfo);

selL4_Word microkit_msginfo_get_count(microkit_msginfo msginfo);

void microkit_irq_ack(microkit_channel ch);

void microkit_deferred_notify(microkit_channel ch);

void microkit_deferred_irq_ack(microkit_channel ch);

void microkit_pd_restart(microkit_child pd, sel4_Word entry_point);

void microkit_pd_stop(microkit_child pd);

void microkit_mr_set(sel4_Uint8 mr, selL4_Word value);

sel4_Word microkit_mr_get(selL4_Uint8 mr);

void microkit_vcpu_restart(microkit_child vcpu, sel4_Word entry_point);

void microkit_vcpu_stop(microkit_child vcpu);

void microkit_vcpu_arm_inject_irq(microkit_child vcpu, sel4_Uintl6 irgq,
sel4_Uint8 priority, selL4_Uint8 group,
sel4_Uint8 index);

void microkit_vcpu_arm_ack_vppi(microkit_child vcpu, selL4_Word irq);

seL4_Word microkit_vcpu_arm_read_reg(microkit_child vcpu, selL4_Word reg);

void microkit_vcpu_arm_write_reg(microkit_child vcpu, sel4_Word reg, selL4_Word value);

void microkit_arm_smc_call(selL4_ARM_SMCContext *args, seL4_ARM_SMCContext *response);

6.1 void init(void)

Every PD must expose an init entry point. This is called by the system at boot time.

6.2 void notified(microkit_channel ch)

The notified entry point is called by the system when a PD has received a notification on a
channel.

ch identifies the channel which has been notified (and indirectly the PD that performed the
notification).

Note: ch could identify an interrupt.

12

Channel identifiers are specified in the system configuration.

6.3 microkit_msginfo protected(microkit_channel ch, microkit_msginfo
msginfo)

The protected entry point is optional. This is invoked when another PD calls microkit_ppcall
on a channel shared with the PD.

The ch argument identifies the channel on which the PP was invoked. Indirectly this identifies
the PD performing the call. Channel identifiers are specified in the system configuration. Note:
The channel argument is passed by the system and is unforgeable.

The msginfo argument is the argument passed to the PP and is provided by the calling PD.
The contents of the message is up to a pre-arranged protocol between the PDs. The message
contents are opaque to the system. Note: The message is copied from the caller.

The returned microkit_msginfo is the return value of the protected procedure. As with argu-
ments, this is copied to the caller.

6.4 sel4_Bool fault(microkit_child child, microkit_msginfo msginfo,
microkit_msginfo *reply_msginfo)

The fault entry point being invoked depends on whether the given PD has children. It is invoked
when a child PD or VM causes a fault.

The child argument identifies the child that caused the fault.

The msginfo argument is given by the selL4 kernel when a fault occurs and contains information
as to what fault occurred.

The reply_msginfo argument is given by libmicrokit and can be used to reply to the fault.

The returned seL4_Bool is whether or not to reply to the fault with the message reply_msginfo.
Returning seL4_True will reply to the fault. Returning seL4_False will not reply to the fault.

You can use microkit_msginfo_get_label on msginfo to deduce what kind of fault happened
(for example, whether it was a user exception or a virtual memory fault).

Whether or not you reply to the fault depends on the type of fault that has occurred and how you
want to handle it.

To find the full list of possible faults that could occur and details regarding to replying to a
particular kind of fault, please see the ‘Faults’ section of the selL4 reference manual.

6.5 microkit_msginfo microkit_ppcall(microkit_channel ch, microkit_msginfo
msginfo)

Performs a call to a protected procedure in a different PD. The ch argument identifies the
protected procedure to be called. msginfo is passed as argument to the protected procedure.
Channel identifiers are specified in the system configuration.

The protected procedure’s return data is returned in the microkit_msginfo.

6.6 void microkit_notify(microkit_channel ch)

Notify the channel ch. Channel identifiers are specified in the system configuration.

13

https://sel4.systems/Info/Docs/seL4-manual-latest.pdf

6.7 void microkit_irq_ack(microkit_channel ch)

Acknowledge the interrupt identified by the specified channel.

6.8 void microkit_deferred_notify(microkit_channel ch)

The same as microkit_notify but will instead not actually perform the notify until the entry
point where microkit_deferred_notify was called returns.

It is important to note that only a single ‘deferred’ API call can be made within the same entry
point.

The purpose of this APl is for performance critical code as this APl saves a kernel system call.

6.9 void microkit_deferred_irq_ack(microkit_channel ch)

The same as microkit_irq_ack but will instead not actually perform the IRQ acknowledge until
the entry point where microkit_deferred_irq_ack was called returns.

It is important to note that only a single ‘deferred’ API call can be made within the same entry
point.

The purpose of this APl is for performance critical code as this APl saves a kernel system call.

6.10 void microkit_pd_restart(microkit_child pd, uintptr_t entry_point)
Restart the execution of a child protection domain with ID pd at the given entry_point. This will
set the program counter of the child protection domain to entry_point.

6.11 void microkit_pd_stop(microkit_child pd)

Stop the execution of the child protection domain with ID pd.

6.12 microkit_msginfo microkit_msginfo_new(uint64_t label, uinti16_t
count)

Creates a new message structure.

The message can be passed to microkit_ppcall or returned from protected.

6.13 uint64_t microkit_msginfo_get_label(microkit_msginfo msginfo)

Returns the label from a message.

6.14 uint64_t microkit_msginfo_get_count(microkit_msginfo msginfo)

Returns the count of message registers in the message.

6.15 wuint64_t microkit_mr_get(uint8_t mr)

Get a message register.

6.16 void microkit_mr_set(uint8_t mr, uint64_t value)

Set a message register.

14

6.17 void microkit_vcpu_restart(microkit_child vcpu, selL4_Word entry_point)

Restart the execution of a VM’s virtual CPU with ID vcpu at the given entry point. This will set
the program counter of the vCPU to entry_point.

6.18 void microkit_vcpu_stop(microkit_child vcpu)

Stop the execution of the VM’s virtual CPU with ID vcpu.

6.19 void microkit_vcpu_arm_inject_irq(microkit_child vcpu, selL4_Uint16
irq, selL4_Uint8 priority, selL4_Uint8 group, selL4_Uint8 index)

Inject a virtual ARM interrupt for a virtual CPU vcpu with IRQ number irq. The priority (0-
31) determines what ARM GIC (generic interrupt controller) priority level the virtual IRQ will be
injected as. The group determines whether the virtual IRQ will be injected into secure world (1)
or non-secure world (0). The index is the index of the virtual GIC list register.

6.20 void microkit_vcpu_arm_ack_vppi(microkit_child vcpu, seL4_Word
irq)

Acknowledge a ARM virtual Private Peripheral Interrupt (PPI) with IRQ number irq for a VM’s
vCPU with ID vcpu.

6.21 sel4_Word microkit_vcpu_arm_read_reg(microkit_child vcpu, selL4_Word
reg)

Read a register for a given virtual CPU with ID vcpu. The reg argument is the index of the register
that is read. The list of registers is defined by the enum seL4_VCPUReg in the selL4 source code.

6.22 void microkit_vcpu_arm_write_reg(microkit_child vcpu, selL4_Word
reg, sel4_Word value)

Write to a register for a given virtual CPU with ID vcpu. The reg argument is the index of the
register that is written to. The value argument is what the register will be set to. The list of
registers is defined by the enum seL4_VCPUReg in the seL4 source code.

6.23 void microkit_arm_smc_call(seL4_ARM_SMCContext *args, seL4_ARM_SMCContext
*xresponse)

This API is available only on ARM and only when selL4 has been configured to enable the
KernelAllowSMCCalls option.

The API takes in arguments for a Secure Monitor Call which will be performed by seL4. Any
response values will be placed into the response structure.

The selL4_ARM_SMCContext structure contains fields for registers x0 to x7.

15

7 System Description File

This section describes the format of the System Description File (SDF).

The system description file is an XML file that is provided as input to the microkit tool.

The root element of the XML file is system.

Within the system root element the following child elements are supported:

protection_domain

* memory_region
* channel

7.1

protection_domain

The protection_domain element describes a protection domain.

It supports the following attributes:

name: A unique name for the protection domain

priority: The priority of the protection domain (integer 0 to 254).

budget: (optional) The PD’s budget in microseconds; defaults to 1,000.

period: (optional) The PD’s period in microseconds; must not be smaller than the budget;
defaults to the budget.

passive: (optional) Indicates that the protection domain will be passive and thus have its
scheduling context removed after initialisation; defaults to false.

stack_size: (optional) Number of bytes that will be used for the PD’s stack. Must be be
between 4KiB and 16MiB and be 4K page-aligned. Defaults to 4KiB.

smc: (optional, only on ARM) Allow the PD to give an SMC call for the kernel to perform.
Only available when the kernel has been configured with KernelAllowSMCCalls. Defaults
to false.

Additionally, it supports the following child elements:

program_image: (exactly one) Describes the program image for the protection domain.

+ map: (zero or more) Describes mapping of memory regions into the protection domain.

irq: (zero or more) Describes hardware interrupt associations.

* setvar: (zero or more) Describes variable rewriting.

protection_domain: (zero or more) Describes a child protection domain.

* virtual_machine: (zero or one) Describes a child virtual machine.

The program_image element has a single path attribute describing the path to an ELF file.

The map element has the following attributes:

+ mr: ldentifies the memory region to map.

vaddr: ldentifies the virtual address at which to map the memory region.

perms: ldentifies the permissions with which to map the memory region. Can be a combi-
nation of r (read), w (write), and x (eXecute), with the exception of a write-only mapping
(just w).

cached: (optional) Determines if mapped with caching enabled or disabled. Defaults to
true.

* setvar_vaddr: (optional) Specifies a symbol in the program image. This symbol will be

rewritten with the virtual address of the memory region.

* setvar_size: (optional) Specifies a symbol in the program image. This symbol will be

rewritten with the size of the memory region.

16

The irq element has the following attributes:

* irq: The hardware interrupt number.

+ id: The channel identifier. Must be at least 0 and less than 63.

* trigger: (optional) Whether the IRQ is edge triggered (“edge”) or level triggered (“level”).
Defaults to “level”.

The setvar element has the following attributes:

+ symbol: Name of a symbol in the ELF file.
* region_paddr: Name of an MR. The symbol’s value shall be updated to this MR'’s physical
address.

The protection_domain element has the same attributes as any other protection domain as
well as:

+ id: The ID of the child for the parent to refer to.
The virtual_machine element has the following attributes:

* name: A unique name for the virtual machine

* priority: The priority of the virtual machine (integer 0 to 254).

* budget: (optional) The VM'’s budget in microseconds; defaults to 1,000.

* period: (optional) The VM'’s period in microseconds; must not be smaller than the budget;
defaults to the budget.

Additionally, it supports the following child elements:

+ vcpu: (one or more) Describes the virtual CPU that will be tied to the virtual machine.
* map: (zero or more) Describes mapping of memory regions into the virtual machine.

The vcpu element has a single id attribute defining the identifier used for the virutal machine’s
vCPU.

The map element has the same attributes as the protection domain with the exception of
setvar_vaddr.

7.2 memory_region

The memory_region element describes a memory region.

It supports the following attributes:

* name: A unique name for the memory region

* size: Size of the memory region in bytes (must be a multiple of the page size)

* page_size: (optional) Size of the pages used in the memory region; must be a supported
page size if provided. Defaults to the largest page size for the target architecture that the
memory region is aligned to.

* phys_addr: (optional) The physical address for the start of the memory region (must be a
multiple of the page size).

The memory_region element does not support any child elements.

7.2.1 Page sizes by architecture

Below are the available page sizes for each architecture that Microkit supports.

17

7.2.1.1 AArché64

- 0x1000 (4KiB)
- 0x200000 (2MiB)

7.2.1.2 RISC-V 64-bit

- 0x1000 (4KiB)
- 0x200000 (2MiB)

7.3 channel

The channel element has exactly two end children elements for specifying the two PDs associ-
ated with the channel.

The end element has the following attributes:

+ pd: Name of the protection domain for this end.

+ id: Channel identifier in the context of the named protection domain. Must be at least 0
and less than 63.

« pp: (optional) Indicates that the protection domain for this end can perform a protected
procedure call to the other end; defaults to false. Protected procedure calls can only be to
PDs of strictly higher priority.

* notify: (optional) Indicates that the protection domain for this end can send a notification
to the other end; defaults to true.

The id is passed to the PD in the notified and protected entry points. The id should be passed
tothe microkit_notify and microkit_ppcall functions.

18

8 Board Support Packages

This chapter describes the board support packages that are available in the SDK.

8.1 Ariane (CVA®6)

Initial support is available for the CVA6 (formerly Ariane) core design on the Digilent Genesys2
board. CVAG6 is an open-source RISC-V (rv64i) processor.

Microkit support expects that a compatible RISC-V SBI (e.g OpenSBI) has executed before
jumping to the beginning of the loader image.

Note that the loader link address is 0x90000000 and this is where the binary must be located
and where OpenSBI (or U-Boot) should begin execution.

You may compile OpenSBI with the Microkit image as a payload, or alternately install OpenSBI
(with U-Boot optionally) to the SD card.

If you are booting from U-Boot, use the following command to start the system image: => go
0x90000000

Note that the OpenSBI version from the CVA6 SDK at the time of writing has issues when booting.
It is recommended to use the mainline OpenSBI.

8.2 Cheshire

Support is available for Cheshire. It is an SoC design based on the CVA6 core, implementing a
64-bit RISC-V CPU.

Microkit outputs a raw binary for this device. Several steps are required in order to boot.

A custom version of OpenSBI is required. It can be found here. Build the firmware payload using
platform fpga/cheshire.

8.2.1 Using U-Boot

With a system pre-configured with the Cheshire ZSBL, OpenSBI and U-boot:

=> go 0x90000000

8.2.2 Raw systerm with no bootloader

Without any firmware present on the SD card, it is still possible to boot Cheshire with a Microkit
system.

Using a GDB prompt via openOCD:
1. Reset board
=> monitor reset halt

2. Load a device tree blob (DTS available in Cheshire repo or seL4) to memory and set the a0
and a1 registers to point at it:

restore /path/to/cheshire.dtb binary 0xa0000000

(tell OpenSBI where DTB is)
> set $a0=0xa0000000

19

https://github.com/pulp-platform/cheshire
https://github.com/pulp-platform/opensbi/tree/cheshire

(tell OpenSBI that the default hart is #0)
> set $al=0
3. Load OpenSBI
load /path/to/opensbi/fw_payload.elf

4. Allow OpenSBI to boot, and interrupt it once the line Test payload running is emitted on
serial.

continue
(wait for output)
> (Ctrl+C)

5. Load Microkit image and execute
restore /path/to/loader.img binary 0x90000000

(execute)

> continue

8.3 i.MX8MM-EVK

Microkit produces a raw binary file, so when using U-Boot you must execute the image using:

=> go 0x41000000

8.4 i.MX8S8MP-EVK

Microkit produces a raw binary file, so when using U-Boot you must execute the image using:

=> go 0x41000000

8.5 i.MX8MQ-EVK
Microkit produces a raw binary file, so when using U-Boot you must execute the image using:

=> go 0x41000000

8.6 MaaXBoard
The MaaXBoard is a low-cost ARM SBC based on the NXP i.MX8MQ system-on-chip.
Microkit produces a raw binary file, so when using U-Boot you must execute the image using:

=> go 0x50000000

8.7 Odroid-C2

The HardKernel Odroid-C2 is an ARM SBC based on the Amlogic Meson S905 system-on-chip.
It should be noted that the Odroid-C2 is no longer available for purchase but its successor, the
Odroid-C4, is readily available at the time of writing.

Microkit produces a raw binary file, so when using U-Boot you must execute the image using:

=> go 0x20000000

20

8.8 0Odroid-C4
The HardKernel Odroid-C4 is an ARM SBC based on the Amlogic Meson S905X3 system-on-chip.
Microkit produces a raw binary file, so when using U-Boot you must execute the image using:

=> go 0x20000000

8.9 QEMU virt (AArch64)

Support is available for the virtual AArch64 QEMU platform. This is a platform that is not based
on any specific SoC or hardware platform and is intended for simulating systems for development
or testing.

It should be noted that the platform support is configured with 2GB of main memory and a single
Cortex-A53 CPU.

You can use the following command to simulate a Microkit system:

$ gemu-system-aarch64 \
-machine virt,virtualization=on \
-cpu cortex-ab3 \
-nographic \
-serial mon:stdio \
-device loader,file=[SYSTEM IMAGE],addr=0x70000000,cpu-num=0 \
-m size=2G

You can find more about the QEMU virt platform in the QEMU documentation.

8.10 QEMU virt (RISC-V 64-bit)

Support is available for the virtual RISC-V (64-bit) QEMU platform. This is a platform that is not
based on any specific SoC or hardware platform and is intended for simulating systems for
development or testing.

It should be noted that the platform support is configured with 2GB of main memory.
You can use the following command to simulate a Microkit system:

$ gemu-system-riscv64 \
-machine virt \
-nographic \
-serial mon:stdio \
-kernel [SYSTEM IMAGE] \
-m size=2G

QEMU will start the system image using its packaged version of OpenSBlI.

You can find more about the QEMU virt platform in the QEMU documentation.

8.11 Raspberry Pi 4B

Support is available for the Raspberry Pi 4 Model B. There are multiple models of the Rasberry Pi
4B that have different amounts of RAM, we target the 1GB model in Microkit. If you require more
than 1GB, please file an issue or pull request to add support for models with larger amounts of
memory.

For initial board setup, please see the instructions on the selL4 website.

21

https://www.qemu.org/docs/master/system/target-arm.html
https://www.qemu.org/docs/master/system/target-riscv.html
https://docs.sel4.systems/Hardware/Rpi4.html

When getting into the U-Boot console you want to load the Microkit binary image to address
0x10000000 and then run go 0x10000000.

For example, if you were to load the image via the MMC you would run the following U-Boot
commands:

=> fatload mmc O 0x10000000 <SYSTEM IMAGE>
=> go 0x10000000
8.12 Pine64 ROCKPro64
Microkit produces a raw binary file, so when using U-Boot you must execute the image using:

=> go 0x30000000

8.13 Pine64 Star64

Support is available for the Pine64 Star64 platform which is based on the StarFive JH7110 SoC.
The platform has a 4GB and 8GB model, we assume the 4GB model.

The default boot flow of the Star64 is: 1. OpenSBI 2. U-Boot 3. Operating System

This means that the system image that Microkit produces does not need to be explicitly packaged
with an SBI implementation such as OpenSBI.

To execute the system image produced by Microkit, execute the following command in U-Boot:

=> go 0x60000000

8.14 TQMa8XQP 1GB

The TQMa8XQP is a system-on-module designed by TQ-Systems GmbH. The modules incorpo-
rates an NXP i.MX8X Quad Plus system-on-chip and 1GiB ECC memory.

TQ-Systems provide the MBa8Xx carrier board for development purposes. The instructions
provided assume the use of the MBa8Xx carrier board. If you are using a different carrier board
please refer to the appropriate documentation.

Note: There are different configured of the TQMa8Xx board which include different NXP SoCs
and different memory configurations. Such modules are not supported.

The MBa8Xx provides access to the TQMa8XQP UART via UART-USB bridge. To access the UART
connect a USB micro cable to port X13. The UART-USB bridge supports 4 individual UARTSs; the
UART is connected to the 2nd port.

By default the SoM will autoboot using U-Boot. Hit any key during the boot process to stop the
autoboot.

A new board will autoboot to Linux. You will likely want to disable autoboot:

=> env set bootdelay -1
=> env save

The board can be reset by pressing switch S4 (located next to the Ethernet port). Alternatively,
you can use the reset command from the U-Boot prompt.

During development the most convenient way to boot a Microkit image is via network booting.
U-Boot support booting via the tftp protocol. To support this you'll want to configure the network.
U-Boot supports DHCP, however it is often more reliable to explicitly set an IP address. For
example:

22

=> env set ipaddr 10.1.1.2

=> env set netmask 255.255.255.0
=> env set serverip 10.1.1.1

=> env save

To use tftp you also need to set the file to load and the memory address to load it to:

=> env set bootfile loader.img
=> env set loadaddr 0x80280000
=> env save

The system image generated by the Microkit tool is a raw binary file.
An example sequence of commands for booting is:

=> tftpboot

=> dcache flush
=> icache flush
=> go ${loadaddr}

Rather than typing these each time you can create a U-Boot script:

=> env set microkit ’tftpboot; dcache flush; icache flush; go ${loadaddr}’
=> env save
=> run microkit

When debugging is enabled the kernel will use the same UART as U-Boot.

8.15 ZCu102

The ZCU102 can run on a physical board or on an appropriate QEMU based emulator.
Microkit produces a raw binary file, so when using U-Boot you must execute the image using:
=> go 0x40000000

For simulating the ZCU102 using QEMU, use the following command:

$ gemu-system-aarch64 \
-m size=4G \
-machine xlnx-zcul02,virtualization=on \
-nographic \
-device loader,file=[SYSTEM IMAGE],addr=0x40000000,cpu-num=0 \
-serial mon:stdio

It should be noted that when using U-Boot to load and run a Microkit system image, that there
may be additional setup needed.

For the ZyngMP class of platforms, which the ZCU102 is apart of, U-Boot does not start the
Microkit system Exception Level 2 (EL2) which is necessary for Microkit to start (this is because
selL4 is configured as a hypervisor).

You can see that when using the go command, U-Boot is unconditionally always dropping down
to ELT.

To avoid this behaviour, the call to armv8_switch_to_ell should be replaced with
armv8_switch_to_el2 in this do_go_exec function.

23

https://github.com/u-boot/u-boot/blob/8937bb265a7f2251c1bd999784a4ef10e9c6080d/board/xilinx/zynqmp/zynqmp.c#L234
https://github.com/u-boot/u-boot/blob/8937bb265a7f2251c1bd999784a4ef10e9c6080d/board/xilinx/zynqmp/zynqmp.c#L234

8.16 Adding Platform Support

The following section is a guide for adding support for a new platform to Microkit.

8.16.1 Prerequisites

Before you can start with adding platform support to Microkit, the platform must be supported
by the selL4 kernel. You can find information on how to do so here.

8.16.2 Getting Microkit Components Working

The first step to adding Microkit support is to modify the build_sdk.py script in order to build
the required artefacts for the new platform. This involves adding to the SUPPORTED_BOARDS list
with the BoardInfo options containing the platform specific attributes. This should be fairly self-
explanatory by looking at the existing entries with the exception of the 1loader_link_address.

The loader_link_address parameter specifies the physical address of where the bootloader
for Microkit (which is responsible for setting up the system before sel4 starts) is going to be
loaded. This address needs to match where in main memory the final system image is actually
loaded (e.g where a previous bootloader such as U-Boot loads the image to). This means that
the address is restricted to the platform’s main memory region.

The other component of Microkit that is platform dependent is the loader itself. The loader will
attempt to access the UART for debug output which requires a basic putc implementation. The
UART device used in the loader should be the same as what is used for the seL4 kernel debug
output.

It should be noted that on RISC-V platforms, the SBI will be used for putc so no porting is
necessary.

Once you have patched the loader and the SDK build script, there should be no other changes
required to have a working platform port. It is a good idea at this point to boot a hello world
system to confirm the port is working.

If there are issues with porting the platform, please open an issue on GitHub.

8.16.3 Contributing Platform Support

Once you believe that the port works, you can open a pull request with required changes as well
as documentation in the manual about the platform and how to run Microkit images on it.

24

https://docs.sel4.systems/projects/sel4/porting.html
https://github.com/sel4/microkit
https://github.com/seL4/microkit/pulls

9 Rationale

This section describes the rationales driving the Microkit design choices.

9.1 Overview

The seL4 microkernel provides a set of powerful and flexible mechanisms that can be used for
building almost arbitrary systems. While minimising constraints on the nature of system designs
and scope of deployments, this flexibility makes it challenging to design the best system for a
particular use case, requiring extensive seL4 experience from developers.

The Microkit addresses this challenge by constraining the system architecture to one that
provides enough features and power for its target usage class (IoT, cyberphysical and other
embedded systems with a static architecture), enabling a much simpler set of developer-visible
abstractions.

9.2 Protection Domains

PDs are single-threaded to keep the programming model and implementations simple, and
because this serves the needs of most present use cases in the target domains. Extending
the model to multithreaded applications (clients) is straightforward and can be done if needed.
Extending to multithreaded services is possible but requires additional infrastructure for which
we see no need in the near future.

9.3 Protected Procedure Priorities

The restriction of only calling to higher priority prevents deadlocks and reflects the notion that
the callee operates on behalf of the caller, and it should not be possible to preempt execution of
the callee unless the caller could be preempted as well.

This greatly simplifies reasoning about real-time properties in the system; in particular, it means
that PPs can be used to implement resource servers, where shared resources are encapsulated
in a component that ensures mutual exclusion, while avoiding unbounded priority inversions
through the immediate priority ceiling protocol.

While it would be possible to achieve the same by allowing PPs between PDs of the same priority,
this would be much harder to statically analyse for loop-freedom (and thus deadlock-freedom).
The drawback is that we waste a part of the priority space where a logical entity is split into
multiple PDs, eg to separate out a particularly critical component to formally verify it, when the
complete entity would be too complex for formal verification. For the kinds of systems targeted
by the Microkit, this reduction of the usable priority space is unlikely to cause problems.

9.4 Protected Procedure Argument Size

The limitation on the size of by-value arguments is forced by the (architecture-dependent) limits
on the payload size of the underlying seL4 operations, as well as by efficiency considerations.
The protected procedure payload should be considered as analogous to function arguments in
the C language; similar limitations exist in the C ABIs (Application Binary Interfaces) of various
platforms.

25

9.5 Limits

The limitation on the number of protection domains in the system is relatively arbitrary. Based
on experience with the system and the types of systems being built it is possible for this to be
increased in the future.

The limitation on the number of channels for a protection domain is based on the size of the
notification word in seL4. Changing this to be larger than 64 would most likely require changes
to seL4. The reason for why the limit is not a power of two is due to part of the notification word
being for internal libmicrokit use.

26

10 Internals

The following section describes internal details for how the Microkit works and all the components
of Microkit. As a user of Microkit, it is not necessary know this information, however, there is no
harm in having a greater understanding of the tools that you are using.

BUILD-TIME RUN-TIME
| | I |
: : : PDA PDB :
! ELF-PD A SYSTEM [I \ /' |
: DESCRIPTION ' | MONITOR I
| FILE | SYSTEM | (INITIAL TASK) |
I ELF-PDB | > IMAGE —>, T |
| | I |
I | | SEL4 |
I [I T |
| MICROKIT TOOL | | |
I | | LOADER |
| | I |

Figure 1: Microkit flow

The diagram above aims to show the general flow of a Microkit system from build-time to
run-time.

The user provides the SDF (System Description File) and the ELFs that correspond to PD program
images to the Microkit tool which is responsible to for packaging everything together into a
single bootable image for the target platform.

This final image contains a couple different things:

+ the Microkit loader

+ sel4

+ the Monitor (and associated invocation data)
+ the images for all the user’s PDs

When booting the image, the Microkit loader starts, jumps to the kernel, which starts the monitor,
which then sets up the entire system and starts all the PDs.

Now, we will go into a bit more detail about each of these stages of the booting process as well
as what exactly the Microkit tool is doing.

10.1 Loader

The loader starts first, it has two main jobs:

1. Unpack all the parts of the system (kernel, monitor, PD images, etc) into their expected
locations within main memory.
2. Finish initialising the hardware such that the rest of the system can start.

Unpacking the system image is fairly straight-forward, as all the information about what parts of
the system image need to go where is figured out by the tool and embedded into the loader at
build-time so when it starts it just goe through an array and copies data into the right locations.

Before the Microkit loader starts, there would most likely have been some other bootloader
such as U-Boot or firmware on the target that did its own hardware initialisation before starting
Microkit.

27

However, there are certain things that selL4 expects to be initialised that will not be done by a
previous booting stage, such as:

+ changing to the right exception level
+ enabling the MMU (seL4 expects the MMU to be on when it starts)
* interrupt controller setup

Once this is all completed, the loader jumps to seL4 which starts executing. The loader will never
be executed again.

10.2 Monitor

Once the kernel has done its own initialisation, it will begin the ‘initial task’. On selL4, this is a
thread that contains all the initial capabilities to resources that are used to setup the rest of the
system.

Within a Microkit environment, we call the initial task the ‘monitor’.
The monitor has two main jobs:

1. Setup all system resources (memory regions, channels, interrupts) and start the user’s
protection domains.
2. Receive any faults caused by protection domains crashing or causing exceptions.

At build-time, the Microkit tool embeds all the system calls that the monitor needs to make in
order to setup the user’s system. More details about how this is done is in the section on the
Microkit tool below. But from the monitor’s perspective, it just iterates over an array of system
calls to make and performs each one.

After the system has been setup, the monitor goes to sleep and waits for any faults from
protection domains. On debug mode, this results in a message about which PD caused an
exception and details on the PD’s state at the time of the fault.

Other than printing fault details, the monitor does not do anything to handle the fault, it will simply
go back to sleep waiting for any other faults.

10.3 libmicrokit

Unlike the previous sections, libmicrokit is not its own program but it is worth a mention since it
makes up the core of each protection domain in a system.

When each PD starts, we enter libmicrokit's starting point which does some initial setup and calls
the init entry point specified by the user. Once that completes, the PD will enter libmicrokit’s
event handler which sleeps until it receives events.

These events could be notifies (from other PDs or from an interrupt), PPCs, and faults. For each
event, the appropriate user-specified entry point is called and then when it returns the PD goes
back to sleep, waiting on any more events.

10.4 Microkit tool

The Microkit tool’s ultimate job is to take in the description of the user’'s system, the SDF, and
convert into an selL4 system that boots and executes.

There are obvious steps such as parsing the SDF and PD ELFs but the majority of the work done
by the tool is converting the system description into a list of seL4 system calls that need to
happen.

28

In order to do this however, the Microkit tool needs to perform o a decent amount of ‘emulation’
to know exactly what system calls and with which arguments to make. This requires keeping
track of what memory is allocated and where, the layout of each capability space, what the initial
untypeds list will look like, etc.

While this is non-trivial to do, it comes with the useful property that if the tool produces a
valid image, there should be no errors upon initialising the system If there are any errors with
configuring the system (e.g running out of memory), they will be caught at build-time. This can
only reasonably be done due to the static-architecture of Microkit systems.

29

	Introduction
	Purpose
	Overview
	Document Structure

	Concepts
	System
	Protection Domains
	Entry points
	Scheduling

	Virtual Machines
	Memory Regions
	Channels
	Protected procedures
	Notifications

	Interrupts
	Faults

	SDK
	Configurations
	Debug
	Release
	Benchmark
	System Requirements

	Microkit Tool
	Language Support
	libmicrokit
	void init(void)
	void notified(microkit_channel ch)
	microkit_msginfo protected(microkit_channel ch, microkit_msginfo msginfo)
	seL4_Bool fault(microkit_child child, microkit_msginfo msginfo, microkit_msginfo *reply_msginfo)
	microkit_msginfo microkit_ppcall(microkit_channel ch, microkit_msginfo msginfo)
	void microkit_notify(microkit_channel ch)
	void microkit_irq_ack(microkit_channel ch)
	void microkit_deferred_notify(microkit_channel ch)
	void microkit_deferred_irq_ack(microkit_channel ch)
	void microkit_pd_restart(microkit_child pd, uintptr_t entry_point)
	void microkit_pd_stop(microkit_child pd)
	microkit_msginfo microkit_msginfo_new(uint64_t label, uint16_t count)
	uint64_t microkit_msginfo_get_label(microkit_msginfo msginfo)
	uint64_t microkit_msginfo_get_count(microkit_msginfo msginfo)
	uint64_t microkit_mr_get(uint8_t mr)
	void microkit_mr_set(uint8_t mr, uint64_t value)
	void microkit_vcpu_restart(microkit_child vcpu, seL4_Word entry_point)
	void microkit_vcpu_stop(microkit_child vcpu)
	void microkit_vcpu_arm_inject_irq(microkit_child vcpu, seL4_Uint16 irq, seL4_Uint8 priority, seL4_Uint8 group, seL4_Uint8 index)
	void microkit_vcpu_arm_ack_vppi(microkit_child vcpu, seL4_Word irq)
	seL4_Word microkit_vcpu_arm_read_reg(microkit_child vcpu, seL4_Word reg)
	void microkit_vcpu_arm_write_reg(microkit_child vcpu, seL4_Word reg, seL4_Word value)
	void microkit_arm_smc_call(seL4_ARM_SMCContext *args, seL4_ARM_SMCContext *response)

	System Description File
	protection_domain
	memory_region
	Page sizes by architecture

	channel

	Board Support Packages
	Ariane (CVA6)
	Cheshire
	Using U-Boot
	Raw systerm with no bootloader

	i.MX8MM-EVK
	i.MX8MP-EVK
	i.MX8MQ-EVK
	MaaXBoard
	Odroid-C2
	Odroid-C4
	QEMU virt (AArch64)
	QEMU virt (RISC-V 64-bit)
	Raspberry Pi 4B
	Pine64 ROCKPro64
	Pine64 Star64
	TQMa8XQP 1GB
	ZCU102
	Adding Platform Support
	Prerequisites
	Getting Microkit Components Working
	Contributing Platform Support

	Rationale
	Overview
	Protection Domains
	Protected Procedure Priorities
	Protected Procedure Argument Size
	Limits

	Internals
	Loader
	Monitor
	libmicrokit
	Microkit tool

